77 research outputs found

    Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer

    Get PDF
    The high affinity nerve growth factor (NGF) NGF receptor, p75NTR, is a member of the tumor necrosis factor (TNF) receptor superfamily that shares a conserved intracellular death domain capable of inducing apoptosis and suppressing growth in prostate epithelial cells. Expression of this receptor is lost as prostate cancer progresses and is minimal in established prostate cancer cell lines. We aimed to verify the role of p75NTR in the azacitidine-mediated antitumor effects on 22Rv1 and PC3 androgen-independent prostate cancer cells. In the present study, we reported that the antiproliferative and pro-apoptotic effects of 5-azacytidine (azacitidine) were more marked in the presence of physiological concentrations of NGF and were reduced when a blocking p75NTR antibody or the selective p75NTR inhibitor, Ro 08-2750, were used. Azacitidine increased the expression of p75NTR without interfering with the expression of the low affinity NGF receptor TrkA and induced caspase 9-dependent caspase 3 activity. Taken together, our results suggest that the NGF network could be a candidate for future pharmacological manipulation in aggressive prostate cancer

    Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay

    Get PDF
    The molecular mechanisms by which glioblastoma multiforme (GBM) refracts and becomes resistant to radiotherapy treatment remains largely unknown. This radioresistance is partly due to the presence of hypoxic regions, which are frequently found in GBM tumors. We investigated the radiosensitizing effects of MEK/ERK inhibition on GBM cell lines under hypoxic conditions. Four human GBM cell lines, T98G, U87MG, U138MG and U251MG were treated with the MEK/ERK inhibitor U0126, the HIF-1α inhibitor FM19G11 or γ-irradiation either alone or in combination under hypoxic conditions. Immunoblot analysis of specific proteins was performed in order to define their anti‑oncogenic or radiosensitizing roles in the different experimental conditions. MEK/ERK inhibition by U0126 reverted the transformed phenotype and significantly enhanced the radiosensitivity of T98G, U87MG, U138MG cells but not of the U251MG cell line under hypoxic conditions. U0126 and ERK silencing by siRNA reduced the levels of DNA protein kinase catalytic subunit (DNA-PKcs), Ku70 and K80 proteins and clearly reduced HIF-1α activity and protein expression. Furthermore, DNA-PKcs siRNA-mediated silencing counteracted HIF-1α activity and downregulated protein expression suggesting that ERKs, DNA-PKcs and HIF-1α cooperate in radioprotection of GBM cells. Of note, HIF-1α inhibition under hypoxic conditions drastically radiosensitized all cell lines used. MEK/ERK signal transduction pathway, through the sustained expression of DNA-PKcs, positively regulates HIF-1α protein expression and activity, preserving GBM radioresistance in hypoxic condition

    Physical Exercise and Quality of Life in Breast Cancer Survivors

    Get PDF
    An important goal for cancer patients is to improve the quality of life (QOL) by maximising functions affected by the disease and its therapy. Preliminary research suggests that exercise may be an effective intervention for enhancing QOL in cancer survivors. Research has provided preliminary evidence for the safety, feasibility, and efficacy of exercise training in breast cancer survivors. The aim of this study was to assess the association between physical exercise and quality of life in a population of female breast cancer survivors, followed up from diagnosis to the off-treatment time period, and investigated about their exercise habits in pre-diagnosis

    Family history of cancer as surrogate predictor for immunotherapy with anti-PD1/PD-L1 agents: preliminary report of the FAMI-L1 study.

    Get PDF
    Aim: Tumors related to hereditary susceptibility seem to have an immunosensitive phenotype. Materials & methods: We conducted a multicenter retrospective study, to investigate if family history of cancer, multiple neoplasms and early onset of cancer could be related to clinical outcomes of anti-PD-1/PD-L1 therapy. Activity and efficacy data of 211 advanced cancer patients (kidney, non-small-cell lung cancer, melanoma, urothelium, colorectal and HeN), treated at seven Italian centers with anti-PD-1/PD-L1 agents, were analyzed. Results: In this preliminary report at multivariate analyses, positive family history of cancer showed a statistically significant relationship with a better objective response rate (p = 0.0024), disease control rate (p = 0.0161), median time to treatment failure (p = 0.0203) and median overall survival (p = 0.0221). Diagnosis of multiple neoplasms significantly correlates only to a better disease control rate, while interestingly non-early onset of cancer and sex (in favor of female patients) showed significant correlation with a better median overall survival (p = 0.0268 and p = 0.0272, respectively). Conclusion: This pilot study seems to individuate easily available patient's features as possible predictive surrogates of clinical benefit for anti-PD-1/PD-L1 treatments. These preliminary results need to be confirmed with a greater sample size, in prospective trials with immunotherapy

    PixDD: a multi-pixel silicon drift detector for high-throughput spectral-timing studies

    Get PDF
    The Pixelated silicon Drift Detector (PixDD) is a two-dimensional multi-pixel X-ray sensor based on the technology of Silicon Drift Detectors, designed to solve the dead time and pile-up issues of photon-integrating imaging detectors. Read out by a two-dimensional self-triggering Application-Specific Integrated Circuit named RIGEL, to which the sensor is bump-bonded, it operates in the 0:5 — 15 keV energy range and is designed to achieve single-photon sensitivity and good spectroscopic capabilities even at room temperature or with mild cooling (< 150 eV resolution at 6 keV at 0 °C). The paper reports on the design and performance tests of the 128-pixel prototype of the fully integrated system

    INfluenza Vaccine Indication During therapy with Immune checkpoint inhibitors: a transversal challenge. The INVIDIa study

    Get PDF
    Aim: Considering the unmet need for the counseling of cancer patients treated with immune checkpoint inhibitors (CKI) about influenza vaccination, an explorative study was planned to assess flu vaccine efficacy in this population. Methods: INVIDIa was a retrospective, multicenter study, enrolling consecutive advanced cancer outpatients receiving CKI during the influenza season 2016-2017. Results: Of 300 patients, 79 received flu vaccine. The incidence of influenza syndrome was 24.1% among vaccinated, versus 11.8% of controls; odds ratio: 2.4; 95% CI: 1.23-4.59; p&nbsp;=&nbsp;0.009. The clinical ineffectiveness of vaccine was more pronounced among elderly: 37.8% among vaccinated patients, versus 6.1% of unvaccinated, odds ratio: 9.28; 95% CI: 2.77-31.14; p&nbsp;&lt;&nbsp;0.0001. Conclusion: Although influenza vaccine may be clinically ineffective in advanced cancer patients receiving CKI, it seems not to negatively impact the efficacy of anticancer therapy

    Development of LGAD sensors with a thin entrance window for soft X-ray detection

    Full text link
    We show the developments carried out to improve the silicon sensor technology for the detection of soft X-rays with hybrid X-ray detectors. An optimization of the entrance window technology is required to improve the quantum efficiency. The LGAD technology can be used to amplify the signal generated by the X-rays and to increase the signal-to-noise ratio, making single photon resolution in the soft X-ray energy range possible. In this paper, we report first results obtained from an LGAD sensor production with an optimized thin entrance window. Single photon detection of soft X-rays down to 452~eV has been demonstrated from measurements, with a signal-to-noise ratio better than 20.Comment: 10 pages, 6 figure

    Novel 3D Pixel Sensors for the Upgrade of the ATLAS Inner Tracker

    Get PDF
    The ATLAS experiment will undergo a full replacement of its inner detector to face the challenges posed by the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). The new Inner Tracker (ITk) will have to deal with extreme particle fluences. Due to its superior radiation hardness the 3D silicon sensor technology has been chosen to instrument the innermost pixel layer of ITk, which is the most exposed to radiation damage. Three foundries (CNM, FBK, and SINTEF), have developed and fabricated novel 3D pixel sensors to meet the specifications of the new ITk pixel detector. These are produced in a single-side technology on either Silicon On Insulator (SOI) or Silicon on Silicon (Si-on-Si) bonded wafers by etching both n- and p-type columns from the same side. With respect to previous generations of 3D sensors they feature thinner active substrates and smaller pixel cells of 50 × 50 and 25 × 100 µm2. This paper reviews the main design and technological issues of these novel 3D sensors, and presents their characterization before and after exposure to large radiation doses close to the one expected for the innermost layer of ITk. The performance of pixel modules, where the sensors are interconnected to the recently developed RD53A chip prototype for HL-LHC, has been investigated in the laboratory and at beam tests. The results of these measurements demonstrate the excellent radiation hardness of this new generation of 3D pixel sensors that enabled the project to proceed with the pre-production for the ITk tracker.publishedVersio

    Characterization of iLGADs using soft X-rays

    Full text link
    Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250250eV--22keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 11keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250250eV, the QE is larger than 55%55\% for all sensor variations, while the charge collection efficiency is close to 100%100\%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.Comment: 16 pages, 8 figure

    High familial burden of cancer correlates with improved outcome from immunotherapy in patients with NSCLC independent of somatic DNA damage response gene status

    Get PDF
    Family history of cancer (FHC) is a hallmark of cancer risk and an independent predictor of outcome, albeit with uncertain biologic foundations. We previously showed that FHC-high patients experienced prolonged overall (OS) and progression-free survival (PFS) following PD-1/PD-L1 checkpoint inhibitors. To validate our findings in patients with NSCLC, we evaluated two multicenter cohorts of patients with metastatic NSCLC receiving either first-line pembrolizumab or chemotherapy. From each cohort, 607 patients were randomly case-control matched accounting for FHC, age, performance status, and disease burden. Compared to FHC-low/negative, FHC-high patients experienced longer OS (HR 0.67 [95% CI 0.46-0.95], p\u2009=\u20090.0281), PFS (HR 0.65 [95% CI 0.48-0.89]; p\u2009=\u20090.0074) and higher disease control rates (DCR, 86.4% vs 67.5%, p\u2009=\u20090.0096), within the pembrolizumab cohort. No significant associations were found between FHC and OS/PFS/DCR within the chemotherapy cohort. We explored the association between FHC and somatic DNA damage response (DDR) gene alterations as underlying mechanism to our findings in a parallel cohort of 118 NSCLC, 16.9% of whom were FHC-high. The prevalence of\u2009 65\u20091 somatic DDR gene mutation was 20% and 24.5% (p\u2009=\u20090.6684) in FHC-high vs. FHC-low/negative, with no differences in tumor mutational burden (6.0 vs. 7.6 Mut/Mb, p\u2009=\u20090.6018) and tumor cell PD-L1 expression. FHC-high status identifies NSCLC patients with improved outcomes from pembrolizumab but not chemotherapy, independent of somatic DDR gene status. Prospective studies evaluating FHC alongside germline genetic testing are warranted
    • …
    corecore